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ABSTRACT 

The introduction of social dynamics in multi-agent environments 

with synthetic agents is an effective way to simulate real-life 

conditions. Nowadays there is a trend towards the integration of 

social dynamics in multi-agent virtual environments to better assess 

the performance of synthetic agents in competitive situations. This 

assessment is usually carried out using human rating methods, such 

as Elo and Glicko, two of the most widespread methods, primarily 

used for chess. This paper introduces a web-based system that was 

developed to provide a way for everyone to be able to use these 

well-known human rating systems in various multi-agent rating 

experiments. A large-scale experiment has been conducted and the 

results have been used to present and prove the functionality of the 

developed system. 
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1. INTRODUCTION 
DOI: http://dx.doi.org/10.1145/2903220.2903224Since complex 

problems began to be studied as Multi-Agent Systems (MAS), the 

study of Social Learning (SL) problems has become very exciting 

[1] [2]. Diverse scientific areas such as sociology, economics, 

computer science, mathematics and marketing use social learning 

as an Artificial Intelligence (AI) tool for developing MAS [2]. 

Ferber [3] argues that the two Social Organization (SO) extremes, 

namely cooperation and competition, may be autonomously studied 

or in combination, depending on the case at hand. As it is quite 

usual in such cases, the social environments are populated with 

game playing agents [4]. For a game agent, the social environment 

is represented by a game with all its components and entities [3] 

[4]. Learning in a game is said to occur when an agent changes a 

strategy choice in response to new information [4] [5] [6]. All 

relevant studies suggest that the simulation of complex social 

environments and the analysis of their data makes for a formidable 

problem of developing social learning mechanisms for agents. The 

need to developing a system with multiple rating methods arises 

from the need to evaluate players’ or agents’ relative skills and 

performances, amongst others, as we have already done in 

extensive experiments [7] using the de facto standard rating 

methods available. Although these rating systems are quite useful 

for Multi-Agent Systems, they sometimes lack consistency when 

compared to each other and this may be due to the not-very-

accurate simulation of a human player by a synthetic agent. As a 

result, we still lack a proper, let alone standardized, rating method 

for virtual agents in competitive environments with social 

dynamics. To facilitate such a development, we have implemented 

various rating systems and integrated them all into a web 

application and offer it to the scientific community for use in 

various multi-agent experiments which involve scoring and 

ranking. We named this system Relative Skill-Level Calculation 

System (ReSkill). 

In the context of Multi-Agent Systems (MAS) endowed with 

learning capabilities, one needs to define a “game” to allow for two 

opponents (of varying strength, tactics and motives) to compete 

against each other, then to create an environment where arbitrary 

collections of agents compete against each other, given a limited 

amount of learning resources (time, allowable number of practice 

games, allowable number of defeats: one can really think of several 

such resources) and, then to design an evaluation toolkit to measure 

how two distinct groups of agents manage their intra-group training 

with respect to their inter-group face off. The allowable degrees of 

freedom for such experiments are more than a few; besides learning 

resources, one can experiment with a variety of learning 

mechanism configurations (thus, simulating different characters; 

for example, fast vs slow learners, risky vs conservative learners, 

exploiters vs explorers, etc.), as well as a variety of opponent 

selection mechanisms (opting to play against a stronger or a weaker 

opponent, opting to play against an opponent of unknown stature, 

etc.), all of them leading to a wealth of social interactions which 

can be recorded and analyzed with the objective of identifying 

interesting (or promising) behaviors.  

The main contribution of the system presented in this paper, is to 

help evaluate an agent’s performance with realistic rating methods 

[8] so as to facilitate the comparison between different playing 

characters and to help highlight the range of tools required to 

support the investigation of multi agent systems. 

This paper is structured as follows: a section with a relevant 

bibliography review is provided to introduce the current state of the 

art in the field of rating methods for competitive games. Then 

comes a section that describes the developed system, its 

architecture, its functionalities and the user interface. The last 

section presents how this system was used to evaluate the results of 

a large-scale game playing multi-agent experiment. At the end, 

conclusions and future work plans are presented. 

2. SKILL RATING METHODS  
Rating systems were first used in chess to calculate an estimate of 

the strength of a player, based on the player’s performance against 

an opponent. The Ingo and Harkness system was the first chess 
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player rating system [9], initially used to allow the members of the 

United States Chess Federation (USCF) to track their individual 

progress in terms other than tournament wins and losses [9].  

The Elo rating system was first introduced by Arpad Elo in 1960 as 

a simple skill calculation of players, based on their wins, their 

losses and their opponents in chess [10]. Chess, however, is a 

competitive two-agent system, where each agent’s performance is 

based solely on its skill. In multi-agent systems, it is used as a 

calculation of fitness for many different learning or search 

algorithms, with promising results [11]. The Elo system assumes 

that each player has a skill that is drawn from a random distribution 

(an agent may have a “good” game or may have a “bad” game); it 

attempts to find the center of that distribution and converge to that 

value. The calculation is performed after each match, in a game 

between two agents A and B, with respective ratings RA and RB. 

Unrated players generally start with a rating of 800 Elo, which 

reflects poor playing or a beginner level.  

The Glicko rating system was first introduced by Mark Glickman 

in 1995 as an improvement of the Elo rating system [12]. The 

Glicko rating system is a method for assessing a player's strength 

in games of skill, such as chess and go. The main contribution of 

this measurement method is “ratings reliability”, the so-called 

ratings deviation (RD). RD measures the accuracy of players rating. 

After a game, the amount the ratings change depend on the RD: the 

change is smaller when the players’ RD is low, and also when their 

opponents’ RD is high. The RD itself decreases after playing a 

game, but increases slowly over time of inactivity. The current 

version, Glicko-V2, introduces the concept of rating volatility, σ 

[12]. A slightly modified version of the Glicko-2 rating system is 

used by the Australian Chess Federation. In Glicko rating systems, 

unrated players start with their rating set to 1500 and RD set to 350. 

A player’s most recent rating is used to calculate the new RD from 

the previous with a specific set of formulas provided by the Glicko 

rating systems. 

The TrueSkill rating system [13] has been successfully used for 

calculating players’ rankings in commercial massively multiplayer 

online game (MMOG). TrueSkill employs a Bayesian inference 

technique for ranking players but has not been yet used or tested for 

evaluation in contexts where  Elo and Glicko are applicable; 

therefore we have not yet invested in exploring its potential. 

3. THE ReSkill SYSTEM 
In order to contribute towards the evaluation of the usage of human 

performance rating systems in Multi-Agent Systems we have 

implemented the most well-known rating systems into an integrated 

web-based system that is open to the scientific community for 

extensive testing and evaluation of agents’ performance. The entire 

system is built in JAVA based on the input–process–output (IPO) 

model [14]. The main operation of the systems is based on the idea 

of the Work Flow system model. As shown in Figure 1, the first 

step of the process is to read and analyze the input file. The next 

step includes processing of the players’/agents’ data and rating to 

provide performance ratings. Finally, the system produces an 

output file for additional data analysis along with various 

performance curves. 

 

Figure 1. The workflow in ReSkill. 

The input files contain the players/agents, their initial ratings (could 

be set to default values) and the results of all the matches between 

them in any competitive matching scenario, as shown in Figure 2 

(a) for two different players/agents. Some generic additional 

information are also optionally included in the input files. It should 

be highlighted that the system supports two different input file 

structures: 

 In the first structure, Limited Input Data Structure (LIDS) 

(Figure 2 (a1)), every player’s/agent’s input data is represented 

by two columns, the opponent and the winner. This input data 

structure could, alternatively, be constructed by using a specific 

tool of the system, where the user manually inputs the data 

values.  

 In the second structure, Full Input Data Structure (FIDS) 

(Figure 2 (a2)), every player’s/agent’s input data is represented 

by seven columns, where the user has to provide the last known 

ratings for each agent, presented in seven (7) columns: 

o the first column of a player/agent shows the opponents, 

o the second column may be used as generic information 

about the game (like the average moves per game), 

o the third column shows the winner of the match, 

o the following four columns show the initial ratings of the 

player/agent (default values can be used based on the 

bibliography). 

 

Figure 2. Input-output files’ structure, sample. 

The output file has similar structure with small changes and some 

additional columns. Specifically, it consists of nine (9) columns 

where two new columns are added, as in Figure 2(b). The first 

column shows the agent under study whereas the last column is an 

incremental number that counts the matches. All the other columns 

are updated versions of the corresponding columns from the input 

files. Both input and output files are CSV structured for maximal 

interoperability and interconnectivity with external data analysis 

tools (and acceptable readability and editability by humans, which 

other data interchange techniques, like JSON, lack). 

A web based Graphical User Interface (GUI) was developed to 

provide an integrated environment for further testing and 

experimenting with player’s/agents’ rating. Figure 3shows the web-

based GUI of the application. For convenience the GUI is divided 

into two different panels, the first (upper) being the panel of the 

files and data and the second (lower) being the panel of the results. 

In the first panel, the user chooses either to upload the input data or 

manually generate the data through the GUI. The second option is 

shown in Figure 3 (a) and it is limited on the creation of LIDS-type 

files. After uploading or generating the data, the “Rating” option 

provides the computation of the player’s/agent’s ratings. At the 

end, the “Export” option stores the results in a CSV text file; in case 

the input data were manually created then an input file is also 

created and stored. 



The second panel of the system provides several tab panels with 

various functionalities: 

 The first tab (Monitoring) provides full information for the 

entire process of a rating session.  

 The next two tabs show the input and output data files in an 

interactive dynamic table format (Figure 3 (a) and (b)). All the 

cells of both tables are editable. By selecting a label of a column 

in the Output-tab table, the column is automatically added for 

plotting to the corresponding chart tab (Figure 3 (c) and (d)). 

Also, each row of the Output-tab table, dynamically produces 

bar graphs of the ratings of the row, in a variety of 

combinations. This charting system may provide rating status 

for every row of the Output-tab table. The user may create 

multiple charts that are dynamically managed by the internal 

pop-up window management system of each tab. In addition, 

the chart’s properties (chart title, axis titles, resolution etc.) may 

be managed through the graphical user interface, furthermore, 

all charts may be exported to several image formats. 

 The final two tabs host the graphs generated for the input and 

the output data respectively. 

 

Figure 3. Web-based GUI of ReSkill. 

A demo of the platform along with usage instructions and sample 

input and output files can be found at http://reskill.splendor.gr 

4. CASE STUDY: A LARGE-SCALE GAME 

PLAYING MULTI-AGENT SYSTEM  
In order to test the functionality of the developed system, we used 

the experimental results produced by running a set of matches in 

RLGame [15] and specifically its tournament version, 

RLGTournament [4]. The configuration of this large scale 

tournament was as follows: 126 agents, all with different 

characteristics, were used in a round-robin tournament with 100 

games per match (each match was repeated 100 times). Each agent 

played 125 matches against different agents, resulting in a total 

number of 787,500 experiments. 

4.1 RLGame 
The game used for the experiments was the RLGame [15], a 

strategy board game, which is played on an n x n square board by 

two players and their pawns. Two a x a square bases on opposite 

board corners are initially populated by β pawns for each player, 

with the white player starting from the lower left base and the black 

player starting from the upper right. The goal for each player is to 

move a pawn into the opponent’s base or to force all opponent 

pawns out of the board (it is the player and not the pawn that acts 

as an agent in this scenario). The base is considered to be a single 

square, therefore a pawn can move out of the base to any adjacent 

free square. Players take turns and pawns move one at a time, with 

the white player moving first. A pawn can move vertically or 

horizontally to an adjacent free square, provided that the maximum 

distance from its base is not decreased (backward moves are not 

allowed). 

The learning mechanism of each agent is based on approximating 

its (reinforcement-learning-inspired) value function with a neural 

network [2] [3]. Each autonomous (back propagation) [16] neural 

network is trained (Figure 4) based on an input of board positions 

along with some flags on overall board coverage. A single node in 

the output layer denotes the extent of the expectation to win when 

one starts from a specific game-board configuration and then makes 

a specific move. 

 

Figure 4. RLGame and learning mechanism. 

RLGame was transformed into a tool for studying multi-agent 

systems via its tournament version, RLGTournament [4]. 

4.2 Analysis of Experimental Results 
Figure 5 and 6 demonstrate the data and ratings analysis results of 

the presented experiment. Specifically, Figure 5 presents the 

comparison of two randomly selected agent’s (Plr1 and Plr10) 

evolution (progress) based on their Elo results after each game, as 

provided by the charting tool of ReSkill. As it may be difficult to 

read a graph for a very large number of games per agent (about 

12,000 for each one, in our case), ReSkill allows for the customized 

rendering of some graphs to make them more readable. 

 

Figure 5. Elo Rating of the evolution (progress) of two agents. 

http://reskill.splendor.gr/


A study of the graph in Figure 5, reveals that none of the agents 

demonstrates a stable evolution, and this can be readily verified by 

creating a corresponding chart that presents the evolution of the 

selected agents based on their Glicko ratings. 

 

Figure 6. Last ratings of agents, Elo and Glicko. 

Figure 6 shows the final Elo and Glicko ratings of all the 

participants of the tournament in the experiment, which generate 

the final rankings of the agents. This bar chart is automatically 

created by the ReSkill system after the completion of the rating 

process and appears at the Output-tab. It is apparent in this graph 

that there is a disagreement regarding the ratings provided by the 

two rating methods. As in previous results comparing Elo and 

Glicko ratings [7], it turns out that the two rating methods 

“disagree” in how they rank the agents in most cases, with a “strong 

disagreement” in many cases. For example, one may easily notice 

that Plr31 ranks 1st according to Glicko while being 22nd 

according to Elo, which looks like a significant disagreement 

between the two rating methods. On the contrary, Plr32 ranks 12th 

and 13th according to the same methods respectively, which is a 

sign of consistency between the methods in this case. The major 

issue though is that there are many significant differences in the 

rankings produced by the two methods, which highlights an 

inconsistency in applying them on virtual agents and indicates that 

they should be carefully examined and, maybe, modified before 

being fully adopted. 

5. CONCLUSIONS AND FURTHER WORK 
The emergence of multi-agent systems has given rise to a need for 

benchmarking agents’ evolution and progress. It is still a common 

approach to employ human performance rating systems in multi-

agent systems, as reported in the literature. ReSkill was developed 

to address the lack of open and widely accessible agents’ rating 

systems. It was primarily built to test and assess any rating method 

and provide comparative results for newly proposed rating 

methods. ReSkill, at its present version, incorporates the two most 

widely-used human rating systems (Elo and Glicko). We use 

standard and open formats in all data processing stages, to 

maximize data interoperability provide various forms of results and 

to facilitate assessment and take-up by fellow researchers. ReSkill 

provides customizable charting functionalities and was built as an 

open and modular integrated environment, so that future 

developments maybe easily integrated. Current plans of 

development include a subsystem to process and integrate user-

defined rating methods and provide data analysis and presentation 

tools (for example, progress graphs), along with the interconnection 

of ReSkill with existing data mining-analysis tools, and recoding 

parts of the system to improve cross-platform functionality given 

the recent (and projected) development on the Java front. 

6. REFERENCES 
[1] Gilbert, N. and Troitzsch, K. G., 2005. Simulation for the 

Social Scientist. Open University Press, 2nd ed. 

[2] Shoham, Y. and Leyton, K. B., 2009. Multiagent Systems: 

Algorithmic, Game-Theoretic and Logical Foundations. 

Cambridge University Press, New York. 

[3] Ferber, J. 1999. Multi-Agent Systems: An Introduction to 

Distributed Artificial Intelligence. Addison-Wesley. 

[4] Kiourt, C. and Kalles, D. 2012. Social Reinforcement 

Learning in Game Playing. In IEEE International 

Conference on Tools with Artificial Intelligence, 322-326, 

Athens, Greece. 

[5] Caballero, A., Botia, J., and Gomez-Skarmeta, A. 2011. 

Using cognitive agents in social simulations. Engineering 

Applications of Artificial Intelligence, 24, 7, 1098-1109. 

[6] Marivate, V. N. 2008. Social Learning Methods in Board 

Game Agents. In IEEE Symposium Computational 

Intelligence and Games, 323-328, Perth, Australia. 

[7] Kiourt, C., Kalles, D., and Pavlidis, G. 2015. Human Rating 

Methods on Multi-Agent Systems. In 13th European 

Conference on Multi-Agent Systems Athens, Greece. 

[8] Kiourt, C. and Kalles, D. 2015. Learning in Multi Agent 

Social Environments with Opponent Models. In 13th 

European Conference on Multi-Agent Systems Athens, 

Greece. 

[9] Harkness, K. 1967. Official Chess Handbook. McKay. 

[10] Elo, A. E. 1978. The Rating of Chess Players, Past and 

Present. New York: Arco Publishing. 

[11] Logan, Y. and Kagan, T. 2013. Elo Ratings for Structural 

Credit Assignment in Multiagent Systems. In Twenty-

Seventh AAAI Conference on Artificial Intelligence (Late-

Breaking De-velopments). 

[12] Glickman, E. and Albyn, J. C. 1999. Rating the chess rating 

system. Chance, 12, 2, 21-28. 

[13] Herbrich, R., Minka, T., and Graepel, T. 2007. 

TrueSkill(TM): A Bayesian Skill Rating System. In in 

Advances in Neural Information Processing Systems 20, MIT 

Press. 

[14] Grady, J. O. 1995. System Engineering Planning and 

Enterprise Identity. Taylor & Francis. 

[15] Kalles, D. and Kanellopoulos, P. 2001. On Verifying Game 

Design and Playing Strategies using Reinforcement 

Learning. In Proceedings of ACM Symposium on Applied 

Computing, special track on Artificial Intelligence and 

Computation Logic Las Vegas. 

[16] Sutton, R. and Barto, A. 1998. Reinforcement Learning: An 

Introduction. MITPress,Cam-bridge, MA. 

 


