
ReSkill: Relative Skill-Level Calculation System
Chairi Kiourt

School of Science and Technology
Hellenic Open University
Patra, GR-26335, Greece

chairik@eap.gr

George Pavlidis
Athena Research Centre

University campus at Kimmeria,
Xanthi GR-67100, Greece

gpavlid@ceti.gr

Dimitris Kalles
School of Science and Technology

Hellenic Open University
Patra, GR-26335, Greece

kalles@eap.gr

ABSTRACT

The introduction of social dynamics in multi-agent environments

with synthetic agents is an effective way to simulate real-life

conditions. Nowadays there is a trend towards the integration of

social dynamics in multi-agent virtual environments to better assess

the performance of synthetic agents in competitive situations. This

assessment is usually carried out using human rating methods, such

as Elo and Glicko, two of the most widespread methods, primarily

used for chess. This paper introduces a web-based system that was

developed to provide a way for everyone to be able to use these

well-known human rating systems in various multi-agent rating

experiments. A large-scale experiment has been conducted and the

results have been used to present and prove the functionality of the

developed system.

CCS Concepts

• General and reference➝Metrics • Computing

methodologies➝Multi-agent systems • Software and its

engineering➝Interactive games.

Keywords

Rating Systems; Performance Rating; Social Events; Strategy

Board Games.

1. INTRODUCTION
DOI: http://dx.doi.org/10.1145/2903220.2903224Since complex

problems began to be studied as Multi-Agent Systems (MAS), the

study of Social Learning (SL) problems has become very exciting

[1] [2]. Diverse scientific areas such as sociology, economics,

computer science, mathematics and marketing use social learning

as an Artificial Intelligence (AI) tool for developing MAS [2].

Ferber [3] argues that the two Social Organization (SO) extremes,

namely cooperation and competition, may be autonomously studied

or in combination, depending on the case at hand. As it is quite

usual in such cases, the social environments are populated with

game playing agents [4]. For a game agent, the social environment

is represented by a game with all its components and entities [3]

[4]. Learning in a game is said to occur when an agent changes a

strategy choice in response to new information [4] [5] [6]. All

relevant studies suggest that the simulation of complex social

environments and the analysis of their data makes for a formidable

problem of developing social learning mechanisms for agents. The

need to developing a system with multiple rating methods arises

from the need to evaluate players’ or agents’ relative skills and

performances, amongst others, as we have already done in

extensive experiments [7] using the de facto standard rating

methods available. Although these rating systems are quite useful

for Multi-Agent Systems, they sometimes lack consistency when

compared to each other and this may be due to the not-very-

accurate simulation of a human player by a synthetic agent. As a

result, we still lack a proper, let alone standardized, rating method

for virtual agents in competitive environments with social

dynamics. To facilitate such a development, we have implemented

various rating systems and integrated them all into a web

application and offer it to the scientific community for use in

various multi-agent experiments which involve scoring and

ranking. We named this system Relative Skill-Level Calculation

System (ReSkill).

In the context of Multi-Agent Systems (MAS) endowed with

learning capabilities, one needs to define a “game” to allow for two

opponents (of varying strength, tactics and motives) to compete

against each other, then to create an environment where arbitrary

collections of agents compete against each other, given a limited

amount of learning resources (time, allowable number of practice

games, allowable number of defeats: one can really think of several

such resources) and, then to design an evaluation toolkit to measure

how two distinct groups of agents manage their intra-group training

with respect to their inter-group face off. The allowable degrees of

freedom for such experiments are more than a few; besides learning

resources, one can experiment with a variety of learning

mechanism configurations (thus, simulating different characters;

for example, fast vs slow learners, risky vs conservative learners,

exploiters vs explorers, etc.), as well as a variety of opponent

selection mechanisms (opting to play against a stronger or a weaker

opponent, opting to play against an opponent of unknown stature,

etc.), all of them leading to a wealth of social interactions which

can be recorded and analyzed with the objective of identifying

interesting (or promising) behaviors.

The main contribution of the system presented in this paper, is to

help evaluate an agent’s performance with realistic rating methods

[8] so as to facilitate the comparison between different playing

characters and to help highlight the range of tools required to

support the investigation of multi agent systems.

This paper is structured as follows: a section with a relevant

bibliography review is provided to introduce the current state of the

art in the field of rating methods for competitive games. Then

comes a section that describes the developed system, its

architecture, its functionalities and the user interface. The last

section presents how this system was used to evaluate the results of

a large-scale game playing multi-agent experiment. At the end,

conclusions and future work plans are presented.

2. SKILL RATING METHODS
Rating systems were first used in chess to calculate an estimate of

the strength of a player, based on the player’s performance against

an opponent. The Ingo and Harkness system was the first chess

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

SETN '16, May 18-20, 2016, Thessaloniki, Greece

© 2016 ACM. ISBN 978-1-4503-3734-2/16/05$15.00

DOI: http://dx.doi.org/10.1145/2903220.2903224

player rating system [9], initially used to allow the members of the

United States Chess Federation (USCF) to track their individual

progress in terms other than tournament wins and losses [9].

The Elo rating system was first introduced by Arpad Elo in 1960 as

a simple skill calculation of players, based on their wins, their

losses and their opponents in chess [10]. Chess, however, is a

competitive two-agent system, where each agent’s performance is

based solely on its skill. In multi-agent systems, it is used as a

calculation of fitness for many different learning or search

algorithms, with promising results [11]. The Elo system assumes

that each player has a skill that is drawn from a random distribution

(an agent may have a “good” game or may have a “bad” game); it

attempts to find the center of that distribution and converge to that

value. The calculation is performed after each match, in a game

between two agents A and B, with respective ratings RA and RB.

Unrated players generally start with a rating of 800 Elo, which

reflects poor playing or a beginner level.

The Glicko rating system was first introduced by Mark Glickman

in 1995 as an improvement of the Elo rating system [12]. The

Glicko rating system is a method for assessing a player's strength

in games of skill, such as chess and go. The main contribution of

this measurement method is “ratings reliability”, the so-called

ratings deviation (RD). RD measures the accuracy of players rating.

After a game, the amount the ratings change depend on the RD: the

change is smaller when the players’ RD is low, and also when their

opponents’ RD is high. The RD itself decreases after playing a

game, but increases slowly over time of inactivity. The current

version, Glicko-V2, introduces the concept of rating volatility, σ

[12]. A slightly modified version of the Glicko-2 rating system is

used by the Australian Chess Federation. In Glicko rating systems,

unrated players start with their rating set to 1500 and RD set to 350.

A player’s most recent rating is used to calculate the new RD from

the previous with a specific set of formulas provided by the Glicko

rating systems.

The TrueSkill rating system [13] has been successfully used for

calculating players’ rankings in commercial massively multiplayer

online game (MMOG). TrueSkill employs a Bayesian inference

technique for ranking players but has not been yet used or tested for

evaluation in contexts where Elo and Glicko are applicable;

therefore we have not yet invested in exploring its potential.

3. THE ReSkill SYSTEM
In order to contribute towards the evaluation of the usage of human

performance rating systems in Multi-Agent Systems we have

implemented the most well-known rating systems into an integrated

web-based system that is open to the scientific community for

extensive testing and evaluation of agents’ performance. The entire

system is built in JAVA based on the input–process–output (IPO)

model [14]. The main operation of the systems is based on the idea

of the Work Flow system model. As shown in Figure 1, the first

step of the process is to read and analyze the input file. The next

step includes processing of the players’/agents’ data and rating to

provide performance ratings. Finally, the system produces an

output file for additional data analysis along with various

performance curves.

Figure 1. The workflow in ReSkill.

The input files contain the players/agents, their initial ratings (could

be set to default values) and the results of all the matches between

them in any competitive matching scenario, as shown in Figure 2

(a) for two different players/agents. Some generic additional

information are also optionally included in the input files. It should

be highlighted that the system supports two different input file

structures:

 In the first structure, Limited Input Data Structure (LIDS)

(Figure 2 (a1)), every player’s/agent’s input data is represented

by two columns, the opponent and the winner. This input data

structure could, alternatively, be constructed by using a specific

tool of the system, where the user manually inputs the data

values.

 In the second structure, Full Input Data Structure (FIDS)

(Figure 2 (a2)), every player’s/agent’s input data is represented

by seven columns, where the user has to provide the last known

ratings for each agent, presented in seven (7) columns:

o the first column of a player/agent shows the opponents,

o the second column may be used as generic information

about the game (like the average moves per game),

o the third column shows the winner of the match,

o the following four columns show the initial ratings of the

player/agent (default values can be used based on the

bibliography).

Figure 2. Input-output files’ structure, sample.

The output file has similar structure with small changes and some

additional columns. Specifically, it consists of nine (9) columns

where two new columns are added, as in Figure 2(b). The first

column shows the agent under study whereas the last column is an

incremental number that counts the matches. All the other columns

are updated versions of the corresponding columns from the input

files. Both input and output files are CSV structured for maximal

interoperability and interconnectivity with external data analysis

tools (and acceptable readability and editability by humans, which

other data interchange techniques, like JSON, lack).

A web based Graphical User Interface (GUI) was developed to

provide an integrated environment for further testing and

experimenting with player’s/agents’ rating. Figure 3shows the web-

based GUI of the application. For convenience the GUI is divided

into two different panels, the first (upper) being the panel of the

files and data and the second (lower) being the panel of the results.

In the first panel, the user chooses either to upload the input data or

manually generate the data through the GUI. The second option is

shown in Figure 3 (a) and it is limited on the creation of LIDS-type

files. After uploading or generating the data, the “Rating” option

provides the computation of the player’s/agent’s ratings. At the

end, the “Export” option stores the results in a CSV text file; in case

the input data were manually created then an input file is also

created and stored.

The second panel of the system provides several tab panels with

various functionalities:

 The first tab (Monitoring) provides full information for the

entire process of a rating session.

 The next two tabs show the input and output data files in an

interactive dynamic table format (Figure 3 (a) and (b)). All the

cells of both tables are editable. By selecting a label of a column

in the Output-tab table, the column is automatically added for

plotting to the corresponding chart tab (Figure 3 (c) and (d)).

Also, each row of the Output-tab table, dynamically produces

bar graphs of the ratings of the row, in a variety of

combinations. This charting system may provide rating status

for every row of the Output-tab table. The user may create

multiple charts that are dynamically managed by the internal

pop-up window management system of each tab. In addition,

the chart’s properties (chart title, axis titles, resolution etc.) may

be managed through the graphical user interface, furthermore,

all charts may be exported to several image formats.

 The final two tabs host the graphs generated for the input and

the output data respectively.

Figure 3. Web-based GUI of ReSkill.

A demo of the platform along with usage instructions and sample

input and output files can be found at http://reskill.splendor.gr

4. CASE STUDY: A LARGE-SCALE GAME

PLAYING MULTI-AGENT SYSTEM
In order to test the functionality of the developed system, we used

the experimental results produced by running a set of matches in

RLGame [15] and specifically its tournament version,

RLGTournament [4]. The configuration of this large scale

tournament was as follows: 126 agents, all with different

characteristics, were used in a round-robin tournament with 100

games per match (each match was repeated 100 times). Each agent

played 125 matches against different agents, resulting in a total

number of 787,500 experiments.

4.1 RLGame
The game used for the experiments was the RLGame [15], a

strategy board game, which is played on an n x n square board by

two players and their pawns. Two a x a square bases on opposite

board corners are initially populated by β pawns for each player,

with the white player starting from the lower left base and the black

player starting from the upper right. The goal for each player is to

move a pawn into the opponent’s base or to force all opponent

pawns out of the board (it is the player and not the pawn that acts

as an agent in this scenario). The base is considered to be a single

square, therefore a pawn can move out of the base to any adjacent

free square. Players take turns and pawns move one at a time, with

the white player moving first. A pawn can move vertically or

horizontally to an adjacent free square, provided that the maximum

distance from its base is not decreased (backward moves are not

allowed).

The learning mechanism of each agent is based on approximating

its (reinforcement-learning-inspired) value function with a neural

network [2] [3]. Each autonomous (back propagation) [16] neural

network is trained (Figure 4) based on an input of board positions

along with some flags on overall board coverage. A single node in

the output layer denotes the extent of the expectation to win when

one starts from a specific game-board configuration and then makes

a specific move.

Figure 4. RLGame and learning mechanism.

RLGame was transformed into a tool for studying multi-agent

systems via its tournament version, RLGTournament [4].

4.2 Analysis of Experimental Results
Figure 5 and 6 demonstrate the data and ratings analysis results of

the presented experiment. Specifically, Figure 5 presents the

comparison of two randomly selected agent’s (Plr1 and Plr10)

evolution (progress) based on their Elo results after each game, as

provided by the charting tool of ReSkill. As it may be difficult to

read a graph for a very large number of games per agent (about

12,000 for each one, in our case), ReSkill allows for the customized

rendering of some graphs to make them more readable.

Figure 5. Elo Rating of the evolution (progress) of two agents.

http://reskill.splendor.gr/

A study of the graph in Figure 5, reveals that none of the agents

demonstrates a stable evolution, and this can be readily verified by

creating a corresponding chart that presents the evolution of the

selected agents based on their Glicko ratings.

Figure 6. Last ratings of agents, Elo and Glicko.

Figure 6 shows the final Elo and Glicko ratings of all the

participants of the tournament in the experiment, which generate

the final rankings of the agents. This bar chart is automatically

created by the ReSkill system after the completion of the rating

process and appears at the Output-tab. It is apparent in this graph

that there is a disagreement regarding the ratings provided by the

two rating methods. As in previous results comparing Elo and

Glicko ratings [7], it turns out that the two rating methods

“disagree” in how they rank the agents in most cases, with a “strong

disagreement” in many cases. For example, one may easily notice

that Plr31 ranks 1st according to Glicko while being 22nd

according to Elo, which looks like a significant disagreement

between the two rating methods. On the contrary, Plr32 ranks 12th

and 13th according to the same methods respectively, which is a

sign of consistency between the methods in this case. The major

issue though is that there are many significant differences in the

rankings produced by the two methods, which highlights an

inconsistency in applying them on virtual agents and indicates that

they should be carefully examined and, maybe, modified before

being fully adopted.

5. CONCLUSIONS AND FURTHER WORK
The emergence of multi-agent systems has given rise to a need for

benchmarking agents’ evolution and progress. It is still a common

approach to employ human performance rating systems in multi-

agent systems, as reported in the literature. ReSkill was developed

to address the lack of open and widely accessible agents’ rating

systems. It was primarily built to test and assess any rating method

and provide comparative results for newly proposed rating

methods. ReSkill, at its present version, incorporates the two most

widely-used human rating systems (Elo and Glicko). We use

standard and open formats in all data processing stages, to

maximize data interoperability provide various forms of results and

to facilitate assessment and take-up by fellow researchers. ReSkill

provides customizable charting functionalities and was built as an

open and modular integrated environment, so that future

developments maybe easily integrated. Current plans of

development include a subsystem to process and integrate user-

defined rating methods and provide data analysis and presentation

tools (for example, progress graphs), along with the interconnection

of ReSkill with existing data mining-analysis tools, and recoding

parts of the system to improve cross-platform functionality given

the recent (and projected) development on the Java front.

6. REFERENCES
[1] Gilbert, N. and Troitzsch, K. G., 2005. Simulation for the

Social Scientist. Open University Press, 2nd ed.

[2] Shoham, Y. and Leyton, K. B., 2009. Multiagent Systems:

Algorithmic, Game-Theoretic and Logical Foundations.

Cambridge University Press, New York.

[3] Ferber, J. 1999. Multi-Agent Systems: An Introduction to

Distributed Artificial Intelligence. Addison-Wesley.

[4] Kiourt, C. and Kalles, D. 2012. Social Reinforcement

Learning in Game Playing. In IEEE International

Conference on Tools with Artificial Intelligence, 322-326,

Athens, Greece.

[5] Caballero, A., Botia, J., and Gomez-Skarmeta, A. 2011.

Using cognitive agents in social simulations. Engineering

Applications of Artificial Intelligence, 24, 7, 1098-1109.

[6] Marivate, V. N. 2008. Social Learning Methods in Board

Game Agents. In IEEE Symposium Computational

Intelligence and Games, 323-328, Perth, Australia.

[7] Kiourt, C., Kalles, D., and Pavlidis, G. 2015. Human Rating

Methods on Multi-Agent Systems. In 13th European

Conference on Multi-Agent Systems Athens, Greece.

[8] Kiourt, C. and Kalles, D. 2015. Learning in Multi Agent

Social Environments with Opponent Models. In 13th

European Conference on Multi-Agent Systems Athens,

Greece.

[9] Harkness, K. 1967. Official Chess Handbook. McKay.

[10] Elo, A. E. 1978. The Rating of Chess Players, Past and

Present. New York: Arco Publishing.

[11] Logan, Y. and Kagan, T. 2013. Elo Ratings for Structural

Credit Assignment in Multiagent Systems. In Twenty-

Seventh AAAI Conference on Artificial Intelligence (Late-

Breaking De-velopments).

[12] Glickman, E. and Albyn, J. C. 1999. Rating the chess rating

system. Chance, 12, 2, 21-28.

[13] Herbrich, R., Minka, T., and Graepel, T. 2007.

TrueSkill(TM): A Bayesian Skill Rating System. In in

Advances in Neural Information Processing Systems 20, MIT

Press.

[14] Grady, J. O. 1995. System Engineering Planning and

Enterprise Identity. Taylor & Francis.

[15] Kalles, D. and Kanellopoulos, P. 2001. On Verifying Game

Design and Playing Strategies using Reinforcement

Learning. In Proceedings of ACM Symposium on Applied

Computing, special track on Artificial Intelligence and

Computation Logic Las Vegas.

[16] Sutton, R. and Barto, A. 1998. Reinforcement Learning: An

Introduction. MITPress,Cam-bridge, MA.

