
jLegends – online game to train programming skills

Konstantinos Tsalikidis, and George Pavlidis
tsalikidhs@gmail.com, gpavlid@gmail.com

Abstract - Gamification and in particular game-based
learning is significantly gaining ground during the latest
decades. It expresses a different approach to education
that is mixing education with gaming, aiming to enhance
the learning experience with game mechanics and rules
and to provide stronger motivations for lifelong learning.
The benefits of learning while playing have been
illustrated by many works to this day. This work presents
such a game-based approach that has been adopted and
used in the development of an online multiplayer platform
game, with a purpose to teach or train programming with
JavaScript. In effect it is like what is usually called a
serious game, or a game with a purpose. The game,
jLegends, is online and available for everyone to train and
test knowledge on programming and logic, within a role-
playing gaming approach. jLegends is built with source-
code scalability in mind, in order to be expandable or even
become open-sourced in the future.

Index Terms – game-based learning, gamification,
educational games, serious games, computer science,
programming, education, training, lifelong learning.

INTRODUCTION

The concept of educational entertainment (also referred to by
the neologism edutainment) has a long history and has been
used by media in many different forms such as audio, video,
film, television, games and radio. Its main purpose is to attract
and maintain an audience, while intentionally incorporating
educational content. The process of learning is a very
complex task which can be very imposing on the students
since it requires a lot of effort. They need a lot of motivation
to cope with it. In view of this, it is within the benefit of
education to create educational software that can be more
interesting and stimulating for students. Currently, there is a
fast growing area of computer technology and computer
games industry that is becoming appealing to youth, which
aims to transform the difficult process of learning to become
more amusing. The use of computers in education and
training dates back to the early 1940s, when researchers
developed the first flight simulators, which used analog
computers to generate simulated onboard instrument data.
The arrival of the personal computer, with the Altair 8800 in
1975, changed the field of software in general, with specific
implications for educational software. While users prior to
1975 were dependent upon university or government owned
mainframe computers with timesharing, after this shift users
could create and use software (Fig. I) for computers at homes
and in schools. Major developments in educational software

in the early and mid-1990s were made possible by advances
in computer hardware. Multimedia graphics and sound were
increasingly used in educational applications. Optical media
(such as CD-ROMs) became the preferred method for content
delivery with several digital encyclopaedias being released as
multimedia application CD-ROMs. With the advent of the
Web in the second half of the 1990s, new methods of
educational software delivery appeared. According to Richard
Van Eck, there are three main approaches to creating software
that stimulates cognitive growth in the gamer: building games
from scratch by educators and programmers, integrating
commercial off-the-shelf software (COTS) [1], and creating
games from scratch by the students [2].

Game-based learning is a special case of gamification.
Gamification is a process that targets the engagement and
involvement of people in problem solving and development,
in various environments and in a pleasing manner. Games can
be used as an educational environment in order to learn about
a specific subject or even develop a skill while playing. The
use of games is based on the motivation aspect that games
involve, which encourages curiosity and creates the
impression of controlling the learning process. It has been
shown that game-based learning can be combined with
similar learning methodologies as Collaborative-based
Learning, Problem-based Learning and Project-based
Learning [3].

FIGURE I

THE 1982 PERSONAL COMPUTER FLIGHT SIMULATOR

Games often have a fantasy element that engages the

player in a learning activity through a narrative or a storyline.
Game-based learning is an expansive category, ranging from
paper-and-pencil games from complex massively multiplayer
online (MMO) and role-playing games (altogether
MMORPG). The use of collaborative game-based role-play
for learning provides an opportunity for learners to apply

acquired knowledge and to experiment and get feedback in
the form of consequences or rewards, thus getting the
experiences in a safe virtual-world. Real-world challenges are
easier faced within a game containing effective, interactive
experiences that actively engage people in the learning
process. In a successful game-based learning environment,
choosing actions, experiencing consequences, and working
toward goals allows players to make mistakes through
experimentation in a risk-free environment. Games have rules
and structure and goals that inspire motivation [4].

Role-playing has a long history in Western culture from
children’s games through the theater and as a training method.
However, fantasy role-playing as a commercial product was
developed in the 1970s and made it to market as the well
known Dungeons and Dragons (D&D, 1974) by Gary Gygax
and Dave Anderson. Role-playing games (RPGs) are played
in a wide variety of formats ranging from discussing character
interaction in tabletop form to physically acting out characters
in Live Action RPG (LARP) [5]. There is also a great variety
of systems of rules and game settings. RPGs that emphasize
plot and character interaction over game mechanics and
combat are sometimes called storytelling-games. These types
of games tend to minimize or altogether eliminate the use of
dice or other randomizing elements. In 1978 the first Multi
User Dungeon (MUD), a text based virtual reality (Fig. II)
role-playing game was designed by Roy Trubshaw and
Richard Bartle. It took almost twenty more years before the
first three-dimensional Massive Multiplayer Online Role-
Playing Game (MMORPG), Meridian 59 (Fig. III) (1996)
was released.

In general, in computers, game development is the
process of creating a video game. Development is carried out
by a game developer, which may be just one person or a
multinational company. Traditional commercial PC and
console games may take several years to develop. On the
other hand indie games [6] can take less time and can be
produced cheaply by individuals or a group of developers.
The indie game industry has seen a rise in recent years with
the mobile game market. The process of creating a video
game starts from an idea or concept. Often the idea is based
on a modification of an existing game concept. The game idea
may fall within one or several genres as designers often
experiment with different combinations of genres. Game
development history begins with the development of the first
video games. The first games created had little entertainment
value as their focus was separate from the user experience. In
fact these games required mainframe computers to play. In
1952 Alexander S.Douglas created OXO (Fig. IV-left), the
first game to use a digital display. In 1958 Willy Higinbotham
created a game called Tennis for two that displayed it's output
on an oscilloscope [7],[8]. The success of “Space Invaders”,
an arcade shooter game by Taito started the beginning of the
golden age of arcade video games and inspired many
manufacturers to enter the market (Fig. IV-right). At the same
time personal computers appeared, driving individual
programmers and hobbyists to develop games on their own.

1 https://www.codecademy.com

FIGURE II

USER INTERFACE OF A MUD USING A TEXT-BASED VIRTUAL REALITY

FIGURE III

SCREENSHOT FROM THE FIRST 3D MMORPG

FIGURE IV

A RECREATION OF THE OXO DISPLAY FROM A SOFTWARE EMULATOR
(SOURCE: HTTPS://GOO.GL/VF4PKT)

ON LEARNING HOW TO CODE

One does not need to be an engineer to program a computer.
In fact, programming is like learning another language, which
just happens to be easier the younger the person is. There are
several online tools and platforms to start learning computer
programming:
• Code Academy1 is a famous website to teach code

interactively, thanks to its helpful interface and well-
structured courses.

• Code Avengers2 offer courses designed to entertain and
at the end of each lesson there is a mini game to release
the accumulated stress and keep learners going for
longer.

• Many more, like Code School, Treehouse, CodeHS and
Scratch.

Using those tools anyone can start to learn programming
interactively, easy, step by step and have, at the same time,
some sort of fun.

Games can be really fun and exciting, and programming
games can be a very interesting process, even if it is not to
make a career out of it. Playing games using code seems to be
an innovative, relatively new. concept. There are already
several games online (there are some examples reported in the
following paragraphs), played by using only code, with most
of them targeting kids. Seymour Papert, a researcher at MIT,
believed that learning programming could be much easier if
there was a fun programming environment to play around in.
This was so successful in the case studies he observed that he
was forced to develop an explanation. He called his theory of
learning constructionism [9] (because the students can
construct their own knowledge by experiment). This spawned
a genre of software toys designed to teach programming [10].
Some of the most popular coding-gaming initiatives are listed
below:
• Code.org3 is a non-profit organization and unanimous

website that aims to encourage people, particularly
school students in the United States, to learn
programming by playing games

• CodeCombat.org4 was largely an accident. After trying
to learn how to code on his own, George Saines realized
that the best way to motivate himself to code was to make
it fun. Fast-forward. less than a year later and
CodeCombat has become one of the fastest-growing
companies in the Learn To Code "Movement".

• Code Spells5 started as the PhD research of Sarah Esper
& Stephen Foster at UC San Diego to teach kids coding
[11]. It is already being developed into something more
than a research project, to make an immersive, visually-
appealing video game that kids & adults will want to
explore for hours.

• Codehunt6. Code Hunt is a an educational coding game
in which the player has to discover missing code
fragments [12].

• Code Warriors7. Code Warriors is a 3D action game
developed by Kuato Studios and includes robots,
JavaScript and battles, as the game guides the player from
a beginner to advanced coder level [6].

• Other popular coding games or gamified coding
environments are Kodable8, Codemancer9, Scratch10 and
Tynker11.

2 https://www.codeavengers.com
3 https://code.org
4 https://codecombat.com
5 http://codespells.org
6 https://www.codehunt.com

JLEGENDS: AN RPG ABOUT CODING

The process of creating a video game starts from an idea or
concept. In this work the idea was to make an online role-
playing game that would be played by writing code and code
only (and no other means of keyboard or mouse interaction
with the gaming environment), in order to train JavaScript
programming skills. Within this concept, if the game were to
be used by a single person then it would require a minimum
general knowledge of the concepts of programming; if the
game were to be used in a classroom-setting then a tutor
familiar with the concepts of programming and with some
experience in JavaScript would be adviced. In the latter use-
case, the students could use the game to learn an entirely new
language under the guidance of their tutor in an engaging way.
The game at its full potential could include advanced
programming scenarios, as will later be described, in order to
change even the very principles upon which the virtual world
is built and the mechanics that drive it.

Generally, the creation of a role-playing game (RPG)
starts with designing the story characters, a set of rules and
settings, and, of course, the game mechanics, which constitute
the most important part regarding the user experience. Then
the graphics come into play, in order to visualize the
environment and the characters and to provide the stage for
the action. Last, but not least, the choice of a gaming platform
to target (at least in the beginning), and the rest of the
technologies (libraries/platforms) that will be used to support
the development process. The characters in such application
scenarios are usually distinguished by two basic
characteristics; the race and the class. The race represents the
species to which the character belongs. The class assigns
abilities and attributes to the character. For example a
Warrior fights in close range using his sword, however a
Ranger attacks from a long range using a bow. A Cleric or
Priest is specialized in healing and all sorts of supportive
magical abilities. In some systems the player is free to choose
a specific path about his/her character usually by assigning
points to certain skills. At the end characters end up being a
mix of different “ingredients” and changed by player's
choices.

In jLegends (JavaScript Legends), the game created for
the purposes of this work, four (4) types of character races
have been selected: Humans, Elves, Orcs, Undead, and six (6)
types of character classes: Warrior, Tank, Ranger, Mage,
Priest. Every character (even non-playing characters-NPCs)
is also defined by the following attributes: Strength, Agility,
Vitality, Energy. Additionally, each character is described by
the following properties:
• ad – Attack Damage, which empowers physical attacks
• ap – Attack Power, which empowers magical spells
• armor – Armor that protects you from physical attacks

7 http://www.kuatostudios.com/games/hakitzu-elite
8 https://www.kodable.com
9 http://codemancergame.com
10 https://scratch.mit.edu
11 https://www.tynker.com

• life – The amount of life hitpoints, which are being
consumed by enemy attacks

• mana – The amount of mana points, which are being
consumed by using spells

These properties are calculated using pre-defined rules and
according to percentages declared in the settings of the game
(Table I). These character stats are being used by the combat
system in order to simulate a fight in a simple and
straightforward manner.

TABLE I

HOW CHARACTER STATS ARE CALCULATED
Character ad ap armor life mana
Warrior
Tank
Ranger
Mage
Priest

Sx1.5
Sx0.75

Ax1.5+Sx0.25
Sx0.75
Sx0.75

Ex0
Ex0

Ex1.5
Ex4
Ex2

Sx0.25+Ax0.75
Sx1.5+Ax1

Sx0.25+Ax0.25
Sx0.25+Ax0.25
Sx0.25+Ax0.25

Vx10
Vx20
Vx7.5
Vx5
Vx5

-
-

100+(Ex1.5)
100+(Ex3)
100+(Ex4)

* S ß Strength, A ß Agility, V ß Vitality, E ß Energy

The rules and settings of the game, play a crucial part in

the creation of an RPG. The rules are what makes the game
interesting and keeps the players under excitement while
playing. The settings are dynamic variables, which tend to
change over time in order to achieve a balance between the
different paths and choices that are available to the players.
Rules apply to each player separately. Every player can create
an infinite number of characters. Every character is described
by its race, class, stats, power level and a name. Players can
only create new characters of Humans and Elves, while Orcs
and Undeads are used as non-playable characters (NPCs)
controlled by the artificial intelligence (AI) system of the
game. Players can choose between three (3) different game
modes:
• Single Player - Playing alone versus the game AI.

Characters gain experience points by killing mobs, which
eventually lead into leveling up. This is a mode either for
learning the game or for experimenting.

• Multiplayer - Playing with others versus the game AI.
Characters gain experience points by killing mobs and
level up through collaboration.

• Player versus Player (PVP) - Playing versus other
players, as a team or individually. In this mode players
are able to form a team and play against others. It can be
really challenging to play by using tactics against other
players. PVP mode uses a rating system to produce
rankings for the players.

Every character is able to perform the following standard
actions:
• Horizontal movement (left/right)
• Attack other characters
• Cast a spell to any other character
• Use a skill
• Rest to recover
The spells and skills vary according to the class of character.

12 An interactive tutorial on how to use and exploit the basic game
functionalities can be accessed at http://jlegends.io/tutorial.

jLegends is a turn-based game. All characters are able to
perform no more than two (2) actions per turn. When playing
against the game AI, in each turn the player (or players) plays
first. Every time a player dies, loses a short amount of
experience but re-spawns after three rounds. At the end of
each turn all characters gain a small amount of mana and hp.
The battleground consists of twenty five sectors where
characters can move, stand and attack or cast spells. All
characters gain two extra points for each power level in order
for the players to build their character's main stats (strength,
agility, vitality, energy).

jLegends is a browser-based game that can be played
using any modern browser even in mobile devices regardless
of the operating system. The server-side is written in
JavaScript as a Node.js application. The client is written in
HTML, CSS and JavaScript using several modern libraries
and modules, as will be described in the following paragraphs.

jLegends is played exclusively by writing code12, so the
game itself is responsible for running the code submitted by
the player, produce an output and translate this output into real
game actions. As the output is being translated, the engine
must ensure that the actions do not violate the game rules or
lead to an undefined result. The game engine of jLegends
consists of several classes such as Player, NPC, Actions,
Skills. All these classes, written in JavaScript, compose the
game engine by cooperating. Fig. V shows the relations
between several classes in order to compose a Player class.

The Stats class represents the ability of an object to be
described by specific properties such as attack-damage,
ability-power, armor, etc. Warrior, Ranger, Mage, Priest
classes represent the game characters classes. Every Player
class inherits from one of these classes. The Actions class
represents the ability of the Player to perform any kind of
action: basic or special moves, simply moving around to using
a spell. The Orientation class represents the ability of the
Player to “know” its position, including the distance from any
given point in the battlefield, and also distances from enemies
and allies. BuffMechanics represents the ability of the Player
to receive buffs. The NPC class is almost identical to the
Player but with a few differences and controlled by the game
AI.

FIGURE V

PLAYER CLASS IN JLEGENDS

II. Technical aspects of jLegends

For the development of jLegends Node.js (NodeJS) has been
employed. NodeJS is an open-source runtime environment for
developing server-side applications. Applications are written
in JavaScript or any other language that compiles to
JavaScript, such as TypeScript, Dart, etc. NodeJS was created
by Ryan Dahl in 2009 and the biggest difference from PHP
and Apache is that Apache is thread and process based (i.e
each request is handled by a separate thread or process),
which means that while it is processing input/output the entire
thread is blocked. NodeJS has asynchronous, event driven
input/output. Every NodeJS instance runs in a single thread
and due to its asynchronous nature, it can handle far more
concurrent requests compared to Apache.

Another core technology used to develop the server is
web sockets, the bi-directional, full-duplex, persistent
connections from a web browser to a server. Once a web
socket connection is established the connection stays open
until the client or server decides to close this connection. With
this open connection, the client or server can send a message
at any given time to the other. This makes web programming
entirely event driven, not just user initiated. Web sockets
provide a persistent connection between a client and server
that both parties can use to start sending data at any time.

Relational databases are the most common database
management systems. They include databases like SQL
Server13, Oracle Database14 and MySQL15. A relational
database management systems (RDMS) offers much better
performance for managing data over desktop database
programs. Today, the most innovative structures for storing
data are NoSQL [13] and object-oriented databases [14].
These do not follow the table/row/column approach of
RDBMS. In jLegends MongoDB16 was used, which is a
NoSQL database. Mongo database is open-source, developed
by MongoDB Inc17. MongoDB stores data in JSON-like
documents that can vary in structure. Related information is
stored together for fast query access through the MongoDB
query language.

The client was written exclusively using HTML5 [15],
CSS3 [16] and JavaScript [17]. One of the main technologies
used to develop the client is jQuery [18]. jQuery is a fast,
small, and feature-rich JavaScript library. It makes things like
HTML document traversal and manipulation, event handling,
animation, and AJAX much simpler with an easy-to-use API
that works across a multitude of browsers [18]. The client in
it's core however is developed with AngularJS [19], an open-
source framework maintained by Google and individual
developers of the open-source community. AngularJS
simplifies both the development and the testing of web
applications (client-side) providing an elegant Model-View-
Controller (MVC) Framework [20] along with many
components commonly used on web applications. One of the
main aspects of AngularJS that makes it extremely useful for

13 Microsoft SQL Server, http://www.microsoft.com/en-us/server-
cloud/products/sql-server/
14 Oracle Database, https://www.oracle.com/database
15 MySQL Database, https://www.mysql.com/

jLegends also is the data binding feature. Data binding in
AngularJS is the the automatic synchronization of data
between the Model and View components. The View is a
projection of the Model at all times. When the Model changes,
the View reflects the same changes and vice versa [21].

Another core technology used for the client of jLegends
is Photon Storm Phaser (Phaser)18. Phaser is an open-source
HTML5 game framework designed to create browser games.
If the device is capable then it uses WebGL19 for rendering,
but otherwise it seamlessly reverts to the Canvas object.
Phaser has a built-in asset loader that can handle: Images,
Sprite Sheets (fixed sized frames), Texture Atlases (including
Texture Packer, JSON Hash, JSON Array, Flash CS6/CC, and
Starling XML formats), Audio files, Data Files (XML, JSON,
plain text), JavaScript files (so you can part-load your games
or JS based resources), Tilemaps (CSV and Tiled map
formats) and Bitmap Fonts.

IMPLEMENTATION

Currently, jLegends is in beta version so only single-player
and multiplayer modes are available. Fig. VI presents a
screenshot during gameplay in jLegends.

The interface consists of a code editor, that provides a
textbox for the user to write code, the actual game stage and
some tools and options. The code editor supports syntax
highlighting for JavaScript, line numbering and a keyboard
shortcut to save the code of the user (��S/Ctrl+S). At its
current version the interface does not support a multiple file
system. To start playing jLegends it is enough to write 5 to 10
lines of code but as users go through the game they realise
that they need more and more code to structure a more
complicated logic. The game canvas aligns at the center of the
window while keeping a fixed aspect ratio.

Tools and options are provided at the bottom right of the
game interface. The Play button and an Auto-play switch are
shown along with the Methods button and the Quit Game
option. The STATS tab displays the character's stats and lets
the user redesign the character.

FIGURE VI

JLEGENDS GAMEPLAY SCREENSHOT

16 https://www.mongodb.com
17 https://www.mongodb.com/company
18 Photon Storm Ltd., Phaser at http://phaser.io
1919 Khronos Group, WebGL at https://www.khronos.org/webgl/

The DOCS tab contains everything the user has to know
in order to play the game. All methods to start writing code
are organized like a simple technical documentation.
Although the DOCS represents a quite easy way to guide
through, there is also another mini window to remind of all
methods, like a paper sticker, enabled by the Methods button.

Another core component is the chat window. It folds and
unfolds by the user. The chat takes place to a public channel
between all users currently playing jLegends. In case of
joining a public game, the chat is limited to users playing in
the same game as allies.

It should be stressed that the most complex part of the
interface implementation was handling the user code and
executing it, in order to produce game actions limited by the
rules of the game.

I. jLegends game mechanics

The overall architecture consists of the client and the server
exchanging data according to the user's input and the game
rules. This is exactly how an ordinary online game works with
the only difference of having programming code as user input.
Fig. VII summarizes the overall functionality through a
typical sequence diagram. The User writes a piece of code to
play, whereas the Client executes this code and produces an
output, which is sent directly to the Server in order to validate
and perform game-actions. After-effects are sent back to the
Client in order to be displayed for the User. This architecture
allowed to isolate the code-execution process to the Client.
This way the Server has less and a lot safer job to perform.
Unsafe code and CPU resources consumption take place
exclusively on the Client bypassing a huge amount of security
code that would have been needed otherwise.

In order for a user to play a turn, the user simply clicks
the Play Turn and if the code is valid, the next turn is being
played automatically. However, many more things happen
before anything is being shown in the game scene. What
doesn't happen and should be noted is that the client is not
sending any code to the server. The client instead executes the
code and produces an output (JavaScript object), which
describes game actions. These actions will later be sent to the
server for validation before they take place to the actual game
scene. Code execution is handled by the Sandbox class. The
Sandbox class contains all the available methods according to
the rules and settings of the game.

An experienced web developer would easily be able to
edit this class from client's source-code using a modern
browser and literally change what these methods do. Then, a
pre-defined method such as move could implement something
entirely new instead of just moving the character (as pre-
defined). This would lead to a completely hackable game,
resulting the elimination of any competition between
competitive players of the game. Of course this cannot really
happen, at least at the current version of the game, because as
it has been said, the output will be validated later by the server
and only rule-based valid moves will be executed.

After the client has executed user's code and produced an
output, the output is being sent to the server through a web

socket connection. Before any further execution, the server
tries to make out the number of actions the user requested in
order to make sure that the number of actions is less than or
equal to the permitted actions per turn (according to the game
rules and settings). This is a security measure against any
possible hacking action trying to send thousands or millions
of actions, to overwhelm the server. Everything else is
handled by the Engine class, which also controls the NPCs.

FIGURE VII

SEQUENCE DIAGRAM OF PLAYING A USER TURN

After each turn by all players, NPCs respond (in player
versus AI). These NPCs are being played by the game AI
written within the Engine class. At the current game version
the AI is a simplified system with minimal intelligence. The
current AI algorithm requires three (3) parameters:
• start-point, the x-coordinate of the spawned NPC. This

parameter helps to limit the random behavior of an NPC,
or simply, to know where it started and how far can it go

• patrol-range, a number that defines the range the NPC
can patrol. The NPC will not exceed this range without a
reason

• reset-agro-range, a number that describes the range at
which the NPC will reset its aggression (agro) towards
the current target. If the NPC has gone too far from its
start-point (in order to attack this target) then it will reset
its agro and stop pursuing the target.

Depending on these parameters the NPC may have a passive-
normal role in the game or a highly aggressive stance. The
algorithm uses three different methods repeatedly in order to
produce two (2) actions. As it's shown in Fig. VIII, the
algorithm starts by calculating the agro given the current
circumstances in the environment. Agro is calculated by how
close is the enemy or how strong its attacks are expected to be
to qualify as a threat and increase the agro for this character.
If there is enough agro for any of the enemy characters, then
the AI decides to attack this character. However, if there is no
agro at all and everything seems clear, then the AI will move
the NPC randomly inside a pre-defined patrol area (defined
by the patrol-range parameter mentioned before) and re-
calculate the agro accordingly.

FIGURE VIII

GAME AI FLOWCHART

FIGURE IX

SIMPLEST PHYSICAL ATTACK EXAMPLE

FIGURE X

SIMPLEST RANGED ATTACK EXAMPLE (FOR MAGE CHARACTER)

FIGURE XI

ADVANCED RANGED ATTACK EXAMPLE

Fig. IX presents the simplest example of a code to deal

with the enemy in the game. In this piece of code, the user
uses a typical physical attack on the enemy to inflict damage.
The way it works is based on the exploitation of a classical
object oriented approach, where the getEnemy() function is
responsible for reading all the data regarding the enemy class
object and storing them to the enemy variable. Then the
second command, executes a movement, which sends the user
avatar towards the enemy and in a physical attack range. The
last (third) command executes a physical attack, when the
user character is able to perform such an attach. In a similar
manner, the piece of code in Fig. X executes a ranged attack,
when the character supports such an attack. Again, the first
thing to do is to read the enemy data using the getEnemy(). A
more complicated and advanced tactic is implemented in the
piece of code depicted in Fig. XI. In this tactic, the user checks
its current mana status (mp variable) and if there is not enough
mana (energy) to cast a ranged attack, the player just rests to
recover faster. In case there is enough energy the player casts
the ranged attack spell ignite that is related to a mage
character in this case.

20 The game is online and available for testing at http://jlegends.io.

DISCUSSION

jLegends has been designed and developed as a simple
and easy-to-use MORPG to train programming skills. At its
current implementation it employs a stable and highly
functional framework as a foundation, and is based on a
simple platform gaming interface and a basic-level game AI20.

The single player mode is definitely a mode of a player
against NPCs. In multiplayer mode the main scenario includes
multiple users against NPCs. At the current version the
system waits for all users to hit “Play” to complete a “turn”.
We are currently exploring approaches like:
• the players to be able to see who has already completed

(pressed “Play”)
• to use a global clock and to keep the game within time

limits: any player would have only, say, 1 minute to play,
or maybe 1 minute after the 1st player has completed

The PVP mode is also in beta and under development (and
not published yet), where the same ideas are being considered.

Considering the gaming scenario, initially, a player
should emphasize on creating a hero and forming the
character’s qualities. The player should strive to increase the
character’s level and to appropriately share the gained points
among the character attributes. This should be carefully
balanced and in the framework of the gaming experience the
players want to have. For example, a warrior with 100 HP
points (and low strength) has a huge amount of life and can
take a lot of beating. On the other side, a warrior with 50 life
and 50 strength can withstand some attacks and impose
considerable damage when attacking, at the same time. The
100-HP player has excellent defense against NPCs but is
practically “useless” in PVP, since in such a game the hero
with the less HP is going to be the target of the attacks and not
this hero (who would somehow be considered as a “shield”).

Once the players form the characters of their heroes then
the challenges are relevant to the “quality” of the code they
use and their strategy. This approach is typical and common
in many RPG games of this kind. It should be stressed that at
the current version the game AI is very basic and supports just
two types (warrior+ranger) of NPCs and only the level of the
NPCs changes when the player advances a level. Ideally, we
imagine the player to pass through the following phases (and
we are currently working towards these scenarios):
• Starts playing by experimenting with code in order to get

accustomed and to learn how to use the system using all
the functions the system provides. Possibly the player
changes the code frequently to check the outcome.

• Understands that the auto-play feature may be exploited
to jump a few levels

• Then new problems should arise (new NPCs with new
playing approaches) in order to make the player think
about revising the code

• Ultimately, the player could use multiple code files for
various cases and strategy styles
There are a number of points that still represent

challenges for further development. For example, a multiple

file system and tabs to navigate betweens files would be a
much better solution, instead of the single file support at the
current version. Additionally, having only 15 lines of code
visible in the display is a bit uncomfortable for the user.
Another point to explore for further development raises from
the fact that the chat system does not support a private
messaging mechanism to allow two users to communicate
privately. In addition, there seems to be a drawback in the
adopted architecture logic: as the Client executes User code
and produces a number of actions, all of the sequence of
actions is being executed regardless of any intermediate
outcome (ex. could attack an already dead character). Last but
not least, a better AI algorithm could be a great asset in the
game as it would offer more challenging gameplay and
engagement in the game.

CONCLUSIONS

As more and more educational approaches pave a way
towards a really gamified education there is still a lack in the
gamified training in programming. To help fill this gap, an
MORPG, jLegends, has been designed and developed based
on the platform gaming paradigm, with a purpose to teach or
train on programming in JavaScript. jLegends was built upon
stable and innovative we-based technologies and is available
for everyone to train and test programming knowledge, styles
and logic, within a well-defined role-playing gaming
approach. Currently we are exploring ways to upgrade the
game engine, to provide more complex AI, to support
multiple code files per user, and add more player-to-player
and player-to-AI playing options. In addition, we are
scheduling real-life evaluations in classroom setups.

ACKNOWLEDGMENT

This work is in partial fulfilment of the requirements for the
MSc degree in “Innovation in Technology and
Entrepreneurship”, Dept of Electrical Engineering, Eastern
Macedonia and Thrace Institute of Technology.

REFERENCES

[1] D. McKinney, Impact of Commercial Off-The-Shelf (COTS) Software
and Technology on Systems Engineering, Presentation to INCOSE
Chapters, August 2001.

[2] R. Van Eck, Digital game-based learning: It’s not just the digital
natives who are restless, Educase Review, 41,2, 1-16, 2006.

[3] J. Hamari, J. Koivisto, H. Sarsa, Does Gamification Work? – A
Literature Review of Empirical Studies on gamification, In proceedings

of the 47th Hawaii International Conference on System Sciences,
Hawaii, USA, January 6-9, 2014.

[4] J.D. Shearer, Development of a Digital Game-based Learning Best
Practices Checklist, Electronic Thesis or Dissertation. Bowling Green
State University, 2011.

[5] K. Salen, E. Zimmerman, Rules of Play: Game Design Fundamentals,
The MIT Press, 2003, ISBN 0-262-24045-9.

[6] Kuatostudios, Hakitzu Elite, online at:
http://www.kuatostudios.com/games/hakitzu-elite, latest access: Nov,
2015

[7] M.E. Moore, J. Novak, Game Industry Career Guide. Delmar: Cengage
Learning, 2010, ISBN 978-1-4283-7647-2.

[7] J. Anderson, Who Really Invented The Video Game?, Atari Magazines,
Retrieved November 27, 2006.

[9] S. Papert, Mindstorms: Children, Computers and Powerful Ideas,
Prentice Hall / Harvester Wheatsheaf, New edition 1 Sept. 1982, ISBN:
978-0710804723.

[10] R. Lockhart, Games that teach programming: a brief overview, web
resource: http://goo.gl/6KyCEY, latest access: Nov, 2015

[11] Codespells, Codespells, online at: http://codespells.org/, latest access:
Nov, 2015

[12] CodeHunt, About CodeHunt, online at:
https://www.codehunt.com/about.aspx, latest access: Nov, 2015

[13] MongoDB, NoSQL explained, online at:
https://www.mongodb.com/nosql-explained, latest access: Nov, 2015.

[14] The Computer Technology Documentation Project, Object oriented
databases, online at:
http://www.comptechdoc.org/independent/database/basicdb/dataobject
.html, latest access: Nov, 2015.

[15] World Wide Web Consortium (W3C), HTML, online at:
http://www.w3.org/html/, latest access: Nov, 2015.

[16] World Wide Web Consortium (W3C), CSS, online at:
http://www.w3.org/Style/CSS/, latest access: Nov, 2015.

[17] Press release announcing JavaScript, Netscape and Sun announce
JavaScript, online at: https://goo.gl/HsLWLk, PR Newswire,
December 4, 1995.

[18] jQuery, What is jQuery, online at: https://jquery.com/, latest access
Nov, 2015.

[19] Google, AngularJS, online at: https://www.angularjs.org, latest access
Nov, 2015.

[20] Cunningham & Cunningham, Inc., Model-View-Controller, online at:
http://c2.com/cgi/wiki?ModelViewController, latest access: Nov, 2015

[21] K. Tsalikidis, Two-way data binding demonstration using AngulatJS,
online at: http://jsfiddle.net/Tsalikidis/rfzqwgyb/4/ddle, latest access:
Nov, 2015.

AUTHOR INFORMATION

Konstantinos Tsalikidis, MSc candidate, MSc in Innovation
in Technology and Entrepreneurship, Department of
Electrical Engineering, Kavala Institute of Technology,
Kavala, Greece.
George Pavlidis, senior member IEEE, Research Director,
Multimedia Research Group, ‘Athena’ Research Center,
Xanthi, Greece.

